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ABSTRACT

The present investigation is concerned with the natural
frequencies of orthotropic circular plates of variable thickness.
In particular, a thickness variation of the form h = h_ (1-HR™) has
been selected. The derivation of the differential equation governing
the motion of the plate is based on the classical formulation of the
theory of plates. The solution of this equation for the axisymmetric
case is obtained by an application of the method of Frobenius.
Characteristic equations for the natural frequencies of clamped and
simply supported plates are derived and numerical results are presented

for several plates of various shapes.
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LIST OF SYMBOLS

plate radius

undetermined constants in deflection solution

coefficients of Frobenius series for specific

exponents of singularity

[l

a b d .
k/ao, k/bo’ Ck/co, k/do, respectively

1]

E h3/12
r 0

E h3/12
r
material constants

frequency, cycles/sec.

= [(a%/h ) /(o/E )] ¥
o r
coefficients of Frobenius series in general form

material constant
plate thickness

thickness of the plate at r=0, r=a, respectively



= l-(ha/ho), non-dimensional thickness coefficient

exponents of singularity in Frobenius series

index of Frobenius series

radial, circumferential, and twisting moments

per unit length
exponent of thickness expression
lateral load per unit area

transverse shear force per unit length

radial coordinate

= r/a, non-dimensional radial coordinate
time

lateral displacement

expressions defined by Eqs. (18), (19), (20),

respectively

coordinate normal to and measured from the

median surface of the plate
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()

= Erq/Er’ non-dimensional material constant

E¢/Er’ non-dimensional material constant

[}

G/Er’ non-dimensional material constant
step function notation

radial and circumferential normal strains
shearing strain

2 4

= pw hoa /Do’ a frequency parameter

mass density of the plate

radial and circumferential bending stresses
shearing stress

circumferential coordinate
circular frequency, rad./sec.

partial derivative of ( ) with respect to

the subscripts following the comma

= d( )/dR



I INTRODUCTION

The literature of recent years contains many analyses of
isotropic and orthotropic circular plates of both uniform and variable
thickness. The transverse vibrations of cylindrically orthotropic
circular plates has been analyzed by Pandalai and Patel [1], and Minkarah
and Hoppmann [2]. In these ihvestigations ciamped as well as simply
supported plates of constant thickness were considered. The present
analysis is an extension of this work and concerns itself with the
investigation of the natural frequencies of orthotropic circular plates
of variable thickness.

In the classical formulation of problems concerning plates of
variable thickness the effects of both transverse shear deformation and
transverse normal stress are neglected, and hence, the stress solutions
do not satisfy the prescribed surface tractions at the upper and lower
surfaces of the plate. However, it has been shown by Essenberg [3] that
the displacements predicted by the theory are reliable provided the
maximum thickness of the plate is small compared to the radius of the
plate. Of course the slope of the plate surface is small compared to
unity. In view of this argument, the classical theory of thin plates
is assumed valid for the present investigation.

The material properties of the plates considered in past

41

investigations {[i], [2]) and in the present analysis as well are character-
ized by the principal directions of orthotropy at a point; these being

the radial and circumferential directions. Such orthotropy may occur
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naturally in some cross sections of wood, or may be manufactured, at
least approximately, by reinforced ‘plastics, by thin impregnated
laminations wound aréund a cylindrical core, or by isotropic plates which
have been stiffened by radial or circumferential ribs. It has been
founa by Carrier.[h] that, as a consequence of this form of orthotropy,
the ofigin of the coordinate system represents a singular point of the
material properties of the plate. The effect of this singularity on the
displacement solution is discussed in the last section of the thesis.

In what follows, the governing equation for the free vibration
of such piates is derived in terms of the lateral deflections of their
median surface. This equation is then solved, for the axisymmetric case,
by the method of FroBenius. The characteristic equations for the natural
frequencies are derived for a clamped and a simply supported plate, and
some numerical examples are considered. Finally, a brief discussion of

the results is presented.



2. DERIVATION OF THE GOVERNING EQUATION

First, it is assumed that the circular plates analyzed in the
present investigation are governed by the small deflection theory of
plates. That is, the following simplifying assumptions are made:

(1) The maximum thickness of the plate is small in comparison with the
radius of the plate. (2) The magnitude of the lateral deflection is
small compared to the local thickness of the plate. (3) The rotations
are very small compéred to the strains and as a result the stretching of
the median surface of the plate is considered negligible. (4) An element
of the plate along a normal to the median surface in the undeformed plate
remains straight and normal to the deformed median surface, and its
extension is negligible. Hence, the transverse shear strains are taken
to be.zero.

The above assumptions lead to the strain displacement relations

€&~ T2 W,
W w
(. = - 2(2r s U50)
M T (1)

Yrcp = --22(‘i';;-_<2),r

in polar coordinates which are the most convenient for the present problem.



In the above equation, €, and qp are the radial and circumferential normal
strains, Yr@ is the shearing strain, w is the lateral displacement of the
median surface of the plate, r and ¢ are the radial and circumferential
coordinates, z is the coordinate normal to and measured from the median
surface of the plate (see Fig. 1), and, firally, a comma after a symbol
denotes partial differentiation of the symbol with respect to the
coordinates indicated by the subscripts following the comma.

Next, it is assumed that the plates are made of orthotropic
material, i.e., the elastic properties of the piate in the radial and
circumferential directions are different. In view of the fact that the
small deflection theory of the plate is assumed to be valid, the pertinent

stress-strain relations for such a plate may be written [5] as

o =E_ e+ E ¢ (2)

where Ur and o0 are normal stresses in the radial and circumferential
E & G are
(P’ rQ and the

in ralati
re;ationsg

directions, Tr@ is the shearing stress, and Er’ E

ey . e
material constants. together with the

=3

strain displacement relations of Eq. (1) may now be used to derive expressions

for the bending moments per unit length in terms of the deflection as
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w w,
M = fz 6 zdz=-D_|w, +« (—iﬁ + -—§§§]
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-2 . r
b W w
= [2 = - r __CPSR)]
Mcp f h % zdz D E?w,rr + B( —+— (3)
- r
h
= - 2 = W, )
ro f h Tnp zdz ZDry ( Q
-2 r ,r

where, Mr’ Mcp and Mr are the radial, circumferential,and twisting

P
moments per unit length, h = h(r,9) is the local thickness of the plate,

= 3 = = =
Dr Erh /12, a Enp/Er’ 8 E@/Er, and vy G/Er'
During bending, in addition to satisfying Eqs. (3) the plate
must also satisfy the equilibrium equation

1 2_ 1 1 - -
r (er),rr r2 (er¢),r¢ * r2 M¢,¢@ r M@,r q (&)

where q is the intensity of the lateral load on the plate. Since the
present problem is concerned with the free vibrations of the plate this
intensity is

q=-_phw,tt (5)



where p is the mass density of the plate, t is the time and w = w (r,o,t).

Substitution of Eqs. (3) and (5) into Eq. (4) yields the govern-

ing equation for the free vibrations of the plate as

W, L) W, W,
b [@, 49 —IIE L oo ( e _reo ®¢) ,
r rerr r 2 3 I
. r r r
. W, W, W, W,
+ -—rr . _r PP w)
B K 5+ 3 + 2+ n +
r r r r
+ by (w’rrcpcp rop W’w)] +
3 N
r r r
w ] W, W,
+ D I:Zw, + 2 rr+oz(”'+2 e -2 cpq’)+
r,r rer 2 3

w, W, , W,
S8 (2 3 e (- )
W, W,

w, W,
+ D [Za ——%59 + 25< 0+ E@@) +
,® r r r




+ Dr,CP(P [(x w:;" + 8 <v:;r + w—;i‘ﬁ)] +
+ DI_,rcp [hy (ﬁigg - 2%9)] =-ph W’£t (6)

For the axisymmetric case this equation reduces to

w

b4
+2(M0 +rD ) —LL
r r

W,
rrrr s T r

D
r

2 orr
+(-BD + (24a) r D _+r°D )———-+
r r,r rsrr r2

+ /SD - BrD + r2 D ) ﬁi& = - phw : (7)
\P"r r,r r,rr r3 Tt '

For the present axisymmetric problem the thickness can vary

only in the radial direction and it is assumed to be given by
o = Ny re\" n
ne g [V (D) ] g 0o Y @)

where, ho and ha represent the thickness of the plate at the center r = 0,
and at the edge of the plate r = a, respectively, n is any positive integer
and the definitions of R and H are obvious. (For a uniform thickness.
plate H = 0). Thus, by definition, the quantity Dr = Erh3/12 becomes

D = Erhg(I-HRn)S/IZ. " Since this quantity must be positive for a full

r

plate everywhere in the interval 0 < r <a it is required that H be less



than unity (H < 1). Substitution of the thickness h given by Eq. (8)

into Eq. (7) leads to the equation .

n 2 2n
(1 =2 HR" +H R )W’RRRR+

W,
+2 [l - (2 + 3n) HR" + (1 + 3n) Hszn] — R,

. {- B + [28-3n(|+0¢+n):| HR" + [- B+3n (1+a+3n)] Hszn} w—;—g—"l +

+ {B } [B(Z-Bn) + 30n (n-l)] R+ (1 '3")(3'3%)H2R2n}% *

4
p ho a

+

where Do = Er hz/lz. Equation (9) is the governing equation for the
axisymmetric free vibration of an orthotropic plate having a thickness

variation h = ho (1-HR™).

The deflection solution to Eq. (9) must satisfy the boundary
conditions which depend upon the manner in which the edge of the plate is
supported. While for a clamped plate the displacement and the slope must
vanish, the displacement and the radial moment must vanish for a simply
supported plate. Thus, at r = a the displacement w must satisfy

| [P
]

-~ 1 oy . —
Tor a ciamped piate:

0 and w/ =0 (10a)

-3
]



for a simply supported plate:
w=0 and w' +aw'/R =0 (10b)

In writing the second of Equations (10b) use has been made of Eq. (3).

In addition to satisfying these conditions the solution must
also satisfy '"regularity' conditions at r = 0, the center of the
plate. These require that at the center the slope be finitékand that
the inertia forces be in equilibrium with the resultant internal trans-
verse shear force. The magnitude of the intensity of shear, Qr’ at a
radius r may be determined from the condition

r
anQr=‘foph2nrw,ttdr | | (1)

It may also be expressed in terms of the moments [5] and hence (see Eq.(3))

in terms of the displacement w. This relation is

,
o
]

(r Mr)’r - M(P

H

W, W, 4

- {Dr [r Worpp T Wor - B ¥ Dr,r [w’rr * a-—:~1}
(12)

In view of Eqs. (11) and (12) the second of the '‘regularity' conditions

requires that at r = 0, the expression on the last line of Equation (12)

must vanish.

= ,
For the present axisymmetric case this condition implies that Wy, = 0.



3. METHOD OF SOLUTION

In attempting to solve the governing Equation (9) first the
non-dimensional variable R = r/a has been introduced. Next, the

displacement w is assumed to have the form
w (R,t) = W(R) 't (13)

where W(R) is a function only of R, i = /-1 and w is the circular frequency.
When Eq. (13) is substituted into Eq. (9) the time and space variables are
separated and an ordinary differential equation in terms of W is obtained
as

(1 - 20" + HERZM)u 4

+ 2 [1 - (2+3n)HR" + (1+3n)H2R2"] ‘;?l/” .
+ {- g + [28-3n(1+0tn) [iR" + [-g+3n(1+ar3n) ?R*"} i’; +

¥ {B '[5(2'3") *+ 30n ("")}'Rn * (1-3n)(B-3an)H2R2"} ‘;—% +

oA =0 (14)
where 2 4
pw hoa .
o

and a prime over a symbol denotes differentiation with respect to R.



For the solution of Eq. (14) the method of Frobenius is adopted.
A series solution for W, about the regular singular point R = 0, is

assumed in the form

W(R) =z 9, Itk (16)
k=0

where k is the index of theAéumnation, j denotes the exponents of singularity,
the 9 represent the coefficients of the series, and 9% is, by assumption,
the coefficient of the first term in the series. Since Eq. (I4) is a
fourth order differential equation, Frobenius' method will yield four
exponents of singularit9 in the solution. Hence, the right hand side of
Eq. (16) represents the sum of four series each corresponding to a
particular value of j; furthermore, the 9 then represent four sets of
coefficients, one for each series.

Substituting the assumed solution (16) into Eq. (14) the following

equation is obtained:

[--} -]
Y X(HIg R o Y Y (ken)Hg, rITRE
k=0 k=n
@« [+
. 2 jtk-k z Jrk-b
- Y z(ek-2n)Hlg , R - ) Ay R =0 (17)
k=2n k=h

where the indices of the summations have been manipulated in such a manner
that R appears to the same power in each term and the functions X, Y and Z

are defined as



>

(j+k) = (j+K) (j+k=2)[ (j+k-1)2-p] (18)

Y (j+k-n) = (j+k-n) {(j+k-n-|)[2(j+k+2n-1)(J+k-n-2)- 28 +

+

3n(1+atn)] + B(2-3n) + 3an(n-1)} (19)

Z (j+k-2n) = (j+k—2n){(j+k-2'n-l) [-(j+k+in-1) (j*+k-2n-2) +
+ -3n(1+a#3n) ] + (1-3n) (30n-B) } (20)

The functional notations X (j+k), Y (j+k-n), and Z (j+k-2n) have been
adopted to indicate that these expressions depend not only on the ratios
of the material properties & and B, and the power of the thickness varia-
tion, n, but also on the value of the exponent of singularity, j, and the
index of summation, k, for which they are to be evaluated. Upon intro-

ducing the step function notation

8 (k-m) = { I kem 2 0 (21)
0 k-m < 0

and collecting the coefficients of successive powers of R, Eq. (17) may be

written in the form

X (3) g, RI* 4

+ {x G+1)g, - 6(1-n) Y(+1-n)Hg, . - 5(1-2n) 2(j+1-2n)Hlg, , } RI3 4

. . 2 j=2
+ {X (j+2)g, - 6(2-n) Y(j+2-n)Hg, - 6(2-2n) Z(j+2-2n)H’g, , } RI7Z +



oo B

+

13.

+ {x (j*3)gy - 5(3-n) Y(j*3-n)Hg;_ - 8(3-2n) Z(j+3-2n)Hzg3_2n} R+

IS K

. . . 2
{X(J+k)gk - §5(k-n) Y(J+k-n)Hgk_n - §(k-2n) Z(j+k-2n)H 9 _on *

k=4

I

Jrk=b _ 0 (22)

- Mg} R

Now, for W(R) given by Eq. (16) to be a solution of Eq. (14) the
coefficient of each term of R in Eq. (22) must vanish identically. Thus,
equating to zero the coefficient of the term RJ-h, the term with the

lowest power of R, yields the indicial equation

X(j) = jU-DIG-D* -8l =0 (23)
The four roots of this equation are
j=0:2:I+/B:]'/B (2)4’)

For each value of j in Eq. (24), the vanishing of the coefficients of the
terms RJ—3, RJ-Z, and RJ-] gives the following equations for determining

9y> 9p> and g

X(j+1)g, = 8(1-n) Y(j+1-n)Hg,__ + 8(1-2n) Z(j*1-2n)Hlg , (25)
X(j+2)g, = 6(2-n) Y(j+2-n)Hg,  + 6(2-2n) Z(j+2-2n)H’g, , (26)
X(j*+3)9; = 8(3-n) Y(j+3-n)Hg,  + 5(3-2n) Z(j+3-2n)H293_2n (27)



.

Finally, for the determination of each of the coefficients 9y for k > L,
the following recurrence relation is obtained when the coefficient of the

term RJ+k-h is equated to zero:
. _ _ el _ Lo 2
X(j+k)g, = 8(k-n) Y(j+k-n)Hg, _ + §(k-2n) Z(j+k-2n)H"g, , +

+ A g‘;_h (k > 4) (28)

This relation determines each of the coefficients 9 (k >4) in terms of
the preceding g's, and hence in terms of 9g for each j in Eq. (2k).

An inspection of Egs. (25) thru (28) indicates that it is not
possible to write a simple expression for the 9 explicitly in terms of 9%
for a general value of n. However, for any particular n the corresponding

solution, W(R), can be written [6] as

@ © ©
_ k k+2 k+1+/8
W(R) = aoz AkR + boz BkR + COZ CkR +

k=0,’+,5, cee k=0 k=0

o
+d - z D Rk+l_\/B (29)
o] k

k=0

In Eq. (29) a, bo’ c,» and d are undetermined canstants, and A = ak/ao,

B, =b /bo’ C, = ck/co, and D b

k k i " k
correspond to the g, calculated with j = 0, 2, 14/B, and 14/B, respectively.

= dk/d where the a , and d
o

The form of the solution given by Eq. (29) applies only for the case in

which B # pzlh, where p is any integer. For cases in which B = p‘/k
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special forms for the solution are required [6]. The isotropic plate
(8 = 1), in particular, is one of these cases since the exponents of
singularity become j = 0, 0, 2, 2, which represents two sets of equal roots,
each set differing by an integer.

The solution for W(R) of Eq. (29) must satisfy the ''regularity"
and boundary conditions discussed previously. In order that the slope
be finite at the center of the plate (R = 0) the solution corresponding to
the root j = 1+/B is inadmissible since its derivative is always singular
at the origin; hence, do = 0. It is noted that this condition also
insures that the deflection is finite at the center. The second ''regularity"
condition to be satisfied at the center (Eq. 12) may be written in terms

of the non-dimensional variable R as
D [Rw’” W -8 E‘] + RD’ [w” +a ”—"] = 0 (30)
r R r R

Upon substituting Eq. (29) with do = 0, noting that B # 1 for this form
of the solution, and using the definition of Dr’ the condition (30)

requires that bo = 0. With these results the solution becomes

[--] «©

W(R) = a_ Z AR+ ) ¢ <P (31)
k=0,4,5,... k=0

where the remaining constants are to be determined from the boundary

conditions at the edge of the plate.




When the boundary conditions (10a) and (10b) are enforced at the
edge of the plate (R = 1), the following sets of simultaneous equations

are obtained:

aoz Ak-"cozck=0
k=0,4,5,... k=0
(32a)
2, Z KA+ < Z (kt1+/8) €, = 0
k=l4,5,... k=0
aoz Ak-’.cozck=0
k=0,4,5,... k=0
(32b)
a, Z k(k+oz-l)Ak tc z (k+|+fB)(k+0~"‘/B)Ck =0
k=4,5,... k=0

where Eqs. (32a) and (32b) correspond to the clamped and simply supported
plate, respectively. The solution of Eqs. (32a) and (32b) for non-trivial
values of a, and SR requires that the determinant of the coefficients of a,
and <, in Eqs. (32a) and (32b) vanishes. These conditions yield the
following characteristic equations for the determination of the natural

frequencies

for a clamped plate:

[ Z Ak_] [ Z (k"”‘fﬁ)ck] - [ Z kAk] [ Z Ck] =0 (33a)

1]
o

k=0,4,5... k=0 k=b,5, ... k
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for a simply supported plate:

0

[ i Ak] [ Z (k+1+/B) (k+oz+/e)ck] -[ Z k(k+Oc-l)Ak:] [ Z Ck] =
k=0,4,5, . k=0 ’ k=b,5,... k=0

(33b)

The roots of Eqs. (33a) and (33b) give the values of A which,
when substituted into the equation

D, \&
o (34)
phoa

f =

%

_w
21

determine the natural frequencies of the plate
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L, I LLUSTRATIVE EXAMPLE

The equationsdeveloped in the previous section were applied to
| several clamped and simply supported plates of various shapes. In
X particular plates of uniform thickness and those with thickness variations
corresponding ton =1 and n = 3 were considered. For all cases the
material parameters @ and B were taken to be 0.3 and 1.4, respuctively.
The numerical calculations were made restricting the series in Eqs. (33a)

and (33b) to include terms up to the twelfth power in A. The results for

f= L(az/ho) /Kp/Er)] f corresponding to the lowest two frequencies (see

Eq. 34) were computed and are presented in the following table.

Simply Supported
Clamped Plate Plate

n H fl f2 fl fz

1 0.1 0.4577 1.793 0.2382 1.356
1 0.25} 0.3980 1.617 0.2151 1.234
1 0.5 || 0.2980 1.309 0.1759 1.023
3 0.1 0.4667 1.836 0.2k58 1.399

3 0.25 || 0.4196 1.723 0.2343 1.340

3 0.5 0.3386 1.509 0.2154 i.é

uniform

thickness 0.4975 1.908 0.2536 1.436

N
N
N

A1l the computations were performed on an IBM 360 computer at the Institute's
Computer Center.
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. 5. DISCUSSION OF RESULTS

A method for détermining the natural frequencies of clamped and
simply supported orthotropic circular plates of radially varying thickness
P " has been presented. From an examination of the numerical results it may

be concluded that the natural frequencies for clamped and sihply supported
plates of a given material tend to decrease as the ratio of the edge thick-
ness of the plate to its thickness at the center i; decreased, and tend to
increase as the thickness exponent'n increases.
The solution for W(R) as given by Eq. (29) is valid évefywhere
in the plate where the material is properly ofthotropic. It ha; been noted,
however, that the fofm of cylindrical orthotropy considgrgd in this
investigation‘cannot exist at the center of the plate. vln order to correct
the theory for this singularity in the material properties, the neighborhood
of the center of the plate Could be treated as an isotropic core of radius,
say, &. The ”regularity” condftions at the center would then be applied
to the solution for the isotropic core; and for the complete solution
the continuity of w,(w,f), Mr .and Qr could;be enforced at r = j, -
the boundary of the isotropic core and the orthotropic plate. The solution
which has been obtained in this investigation may be considered a limiting
case of this approach, where A is allowed to go to zero. It is this
inexactness of the solution at the origin which causes the thebry to predict
infinite moments at the center for cases where B < 1, and zero moments at
- the center for cases where B> 1. However, it is hoped that the present theory
will predict frequencies in good agreement with those which may be predicted by

the complete solution with an isotropic core of a very small radius.-
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